Casco y tubos



Los intercambiadores de calor de casco y tubos están compuestos por tubos cilíndricos, montados dentro de una carcasa también cilíndrica, con el eje de los tubos paralelos al eje de la carcasa. Un fluido circula por dentro de los tubos, y el otro por el exterior (fluido del lado de la carcasa). Son el tipo de intercambiadores de calor más usado en la industria.

Partes de un intercambiador de calor de carcasa y tubos

Esquema intercambiador de calor
Los componentes básicos de este intercambiador son: El haz de tubos (o banco de tubos), carcasa, cabezal fijo, cabezal removible (o trasero), deflectores, y la placa tubular.

Configuración

Se usa una amplia variedad de configuraciones en los intercambiadores de calor de carcasa y tubos, dependiendo del desempeño deseado de transferencia de calor, caída de presión y los métodos empleados para reducir los esfuerzos térmicos, prevenir fugas, fácil mantenimiento, soportar las presiones y temperaturas de operación, y la corrosión. Estos intercambiadores se construyen de acuerdo a las normas de la Asociación de Fabricantes de Intercambiadores de Calor Tubulares (TEMA1​), con algunas modificaciones, dependiendo del país.

Tubos

Los tubos son los componentes fundamentales, proporcionando la superficie de transferencia de calor entre el fluido que circula por el interior de los tubos, y la carcasa. Los tubos pueden ser completos o soldados y generalmente están hechos de cobre o aleaciones de acero. Otras aleaciones de níquel, titanio o aluminio pueden ser requeridas para aplicaciones específicas.

Los tubos pueden ser desnudos o aletados. Las superficies extendidas se usan cuando uno de los fluidos tiene un coeficiente de transferencia de calor mucho menor que el otro fluido. Los tubos doblemente aletados pueden mejorar aún más la eficiencia. Las aletas proveen de dos a cuatro veces el área de transferencia de calor que proporcionaría el tubo desnudo. La cantidad de pasos por los tubos y por la carcasa dependen de la caída de presión disponible. A mayores velocidades, aumentan los coeficientes de transferencia de calor, pero también las pérdidas por fricción y la erosión en los materiales. Por tanto, si la pérdida de presión es aceptable, es recomendable tener menos cantidad de tubos, pero de mayor longitud en un área reducida. Generalmente los pasos por los tubos oscilan entre 1 y 8. Los diseños estándares tienen uno, dos o cuatro pasos por los tubos. En múltiples diseños se usan números pares de pasos. Los números de pasos impares no son comunes, y resultan en problemas térmicos y mecánicos en la fabricación y en la operación.

La selección del espaciamiento entre tubos es un equilibrio entre una distancia corta para incrementar el coeficiente de transferencia de calor del lado de la carcasa, y el espacio requerido para la limpieza. En la mayoría de los intercambiadores, la relación entre el espaciamiento entre tubos y el diámetro exterior del tubo varía entre 1,25 y 2. El valor mínimo se restringe a 1.25 porque para valores inferiores, la unión entre el tubo y la placa tubular se hace muy débil, y puede causar filtraciones en las juntas. Para los mismos espaciamiento entre tubos y caudal, los arreglos en orden decrecientes de coeficiente de transferencia de calor y caída de presión son: 30°, 45°, 60° y 90°.


Placa tubular

Los tubos se mantienen en su lugar al ser insertados dentro de agujeros en la placa tubular, fijándose mediante expansión o soldadura. La placa tubular es generalmente una placa de metal sencilla que ha sido taladrada para albergar a los tubos(en el patrón deseado), las empacaduras y los pernos. En el caso de que se requiera una protección extra de las fugas puede utilizarse una doble placa tubular.

El espacio entre las placas tubulares debe estar abierto a la atmósfera para que cualquier fuga pueda ser detectada con rapidez. Para aplicaciones más peligrosas puede usarse una placa tubular triple, sellos gaseosos e incluso un sistema de recirculación de las fugas.

La placa tubular además de sus requerimientos mecánicos debe ser capaz de soportar el ataque corrosivo de ambos fluidos del intercambiador y debe ser compatible electroquímicamente con el material de los tubos. A veces se construyen de acero de bajo carbono cubierto metalúrgicamente por una aleación resistente a la corrosión.

Deflectores

Hay dos tipos de deflectores, transversales y longitudinales. El propósito de los deflectores longitudinales es controlar la dirección general del flujo del lado de la carcasa. Por ejemplo, las carcasas tipo F, G y H tienen deflectores longitudinales. Los deflectores transversales tienen dos funciones, la más importante es la de mantener a los tubos en la posición adecuada durante la operación y evita la vibración producida por los vórtices inducidos por el flujo. En segundo lugar ellos guían al fluido del lado de la carcasa para acercarse en lo posible a las características del flujo cruzado. También tienen la función de hace que el fluido que circula por la carcasa lo haga con mayor tubulencia para que aumente el coeficiente convectivo (o coeficiente de película) exterior de los tubos, es decir, para que aumente la cantidad de calor transferido.

El tipo de deflector más común es el simple segmentado. El segmento cortado debe ser inferior a la mitad del diámetro para asegurar que deflectores adyacentes se solapen en al menos una fila completa de tubos. Para flujos de líquidos en el lado de la carcasa el corte del deflector generalmente es del 20 a 25 por ciento; para flujos de gas a baja presión de 40 a 45 por ciento, con el objetivo de minimizar la caída de presión.

Carcasa y boquillas del lado de la carcasa

La carcasa es la envolvente del segundo fluido, y las boquillas son los puertos de entrada y salida. La carcasa generalmente es de sección circular y esta hecha de una placa de acero conformado en forma cilíndrica y soldado longitudinalmente. Carcasas de pequeños diámetros (hasta 24 pulgadas) pueden ser hechas cortando un tubo del diámetro deseado con la longitud correcta (pipe shells). La forma esférica de la casaca es importante al determinar el diámetro de los reflectores que pueden ser insertados y el efecto de fuga entre el deflector y la casaca. Las carcasas de tubo suelen se más redondas que las carcasa roladas.

En intercambiadores grandes la carcasa esta hecha de acero de bajo carbono siempre que sea posible por razones de economía aunque también pueden usarse otras aleaciones cuando la corrosión o las altas temperaturas así lo requieran.

La boquilla de entrada suele tener una placa justo debajo de ella para evitar que la corriente choque directamente a alta velocidad en el tope del haz de tubos. Ese impacto puede causar erosión, cavitación, y vibraciones. Con el objetivo de colocar esta laca y dejar suficiente espacio libre entre este y la carcasa para que la caída de presión no sea excesiva puede ser necesario omitir algunos tubos del patrón circular completo.

Canales del lado de los tubos y boquillas
Los canales y las boquillas simplemente dirigen el flujo del fluido del lado de los tubos hacia el interior o exterior de los tubos del intercambiador. Como el fluido del lado de los tubos es generalmente el más corrosivo, estos canales y boquillas suelen ser hechos de materiales aleados (compatibles con la placa tubular). Deben ser revestidos en lugar de aleaciones sólidas.

Cubiertas de canal

Las cubiertas de canal son placas redondas que están atornilladas a los bordes del canal y pueden ser removidos para inspeccionar los tubos sin perturbar el arreglo de los tubos. En pequeños intercambiadores suelen ser usados cabezales con boquillas laterales en lugar de canales y cubiertas de canales.

No hay comentarios:

Publicar un comentario

1.5 TRN

Enfriador de líquido marca INENMEX® , modelo IEMIAHD 4,500 de 1.5 T.R.N.,en un circuito tipo paquete para manejar un volumen de agua en el...

Mensajes